If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+40x-56=0
a = 16; b = 40; c = -56;
Δ = b2-4ac
Δ = 402-4·16·(-56)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-72}{2*16}=\frac{-112}{32} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+72}{2*16}=\frac{32}{32} =1 $
| 13=v-2 | | |4x-3|=14 | | z+-4=6 | | 4u-7/(-7)=u-7/4 | | c+-8=-3 | | 8/9x-1/3=4 | | 0=80(0.4)^x | | v-473=585 | | 8m+7=-17m=3 | | 10j-9j+2j-3j+j=18 | | 3u+-12u+15u-11u=17 | | 10t-7t-t+t=18 | | 11+-11w-14w+w=-13 | | 9x+16∘+8x+7∘=40∘. | | 6x-5=3;=3 | | 0.5(10x+21)=4(0.2x+5) | | (x+6)/2+(x+4)/3=7 | | 3(x-3)=4(x+5)-18 | | j-j+3j-2j+3j=12 | | (x+6)/(2)+(x+4)/(3)=(7) | | 7x+29=11x–31 | | 9x-2-3x=8x+3-3x | | 20p-16p-2p-p=13 | | 20a-12a+-12a=16 | | -16x^2+84x=0 | | 4(2b+2)=-2+6b | | 17x-17x+x=15 | | 7z+4z-7z=16 | | 7-3*n=-22 | | 0.80(.60x)=48 | | w+3-w+2w-4w=12 | | 8-7(3v-6=) |